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We are interested in applying lattice BGK models to the diffusion-driven 
reactive system A + B ~ C, which was investigated by Gfilfi and R~.cz with an 
asymptotic analysis and by Chopard and Droz with a cellular automaton 
model. The lattice BGK model is free from noise and flexible for various 
applications. We derive the general reaction-diffusion equations for the lattice 
BGK models under the assumption of local diffusive equilibrium. Two fourth- 
order terms are derived and verified by numerical simulations. The motivation 
of this study is to compare the lattice BGK results with existing results before 
we apply the models to more complicated systems. The scalings concern two 
exponents ct and fl appearing in the production rate of C component 
R(x, t )~ t-PG(xt-~). We find the same values for ct= 1/6 and f l=2 /3  as G~ilfi 
and R~.cz found at the long time limit. A Gaussian-like function for G is numeri- 
cally obtained, which confirms a similar result of Gfilfi and R~cz. On the one 
hand, when compared with the asymptotic analysis, lattice BGK models are 
easy to apply to cases where no analytic or asymptotic results exist; on the other 
hand, when compared with cellular automaton models, lattice BGK models are 
faster, simpler, and more accurate. The discrepancy of the results between the 
cellular automaton model and the lattice BGK models for the exponents comes 
from the role of the intrinsic fluctuation. Once the time and space correlation of 
stochastic stirring is given, we can incorporate a random fluctuating term in 
lattice BGK models. The Schl6gl model is also tested, showing the ability of 
lattice BGK models for generating Turing patterns, which may stimulate further 
interesting investigations. 
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1. I N T R O D U C T I O N  

Reaction-diffusion equations appear in many chemical, biological, and 
physical systems, c25~ They usually involve complicated nonlinear reactions. 
When driven far from equilibria, the systems show interesting behaviors, 
such as bistability, temporal oscillations, chemical waves, and phase tur- 
bulence. A full molecular description of such systems is difficult because of 
the wide range of relevant scales in space and time and a direct simulation 
requires a huge number of particles, which is beyond the ability of the most 
powerful supercomputers. However, simple alternative models which 
preserve several features of the full systems and which are easier to simulate 
on computers can be constructed in a systematic way. One such alternative, 
the lattice BGK approach, will be presented in this paper. The purposes of 
this paper are threefold: (1) the first is to check high-order effects for dis- 
persion relations of systems simulated by lattice BGK models; (2) the 
second is to compare and verify some existing asymptotic results at long 
times for a specific problem, diffusion-driven reaction, and to show the 
scaling results of all times (short times and long times); (3) the last is to 
stimulate further interesting studies by showing the capability of lattice 
BGK models to generate pattern formations. The paper will be organized 
as follows: In Section 2 we will specify the front dynamics of A + B ~ C 
and the Schl6gl model. We outline the lattice BGK models for the 
reactions-diffusion systems in Section 3; numerical results are presented in 
Section 4. The conclusion is given in Section 5. 

2. R E A C T I O N - D I F F U S I O N  S Y S T E M S  

Reaction-diffusion systems can be formulated mathematically as 

O,p.,.=x.,.O~p~+ F.,.(p) (1) 

where p.,. is the density of the sth component, F, is the reaction function 
resulting from very complicated chemical reaction processes, and K~. is the 
diffusivity. The diffusion effect stabilizes the system, while the reaction may 
drive the system away from some fixed states. The competition between dif- 
fusion and reaction leads to the emergence of spatial or temporal structures 
at a characteristic scale which depends only on the diffusivities and the 
eigenvalue of the linearized matrix of the reaction functions around fixed 
points; the interested reader is referred to a review paper by Koch and 
Meinhardt/2~ 

The Schl6gl model 132~ describes a single-component auto catalytic 
system, characterized by 

F(p) = - k 3 p 3 + k 2 p 2 - k t p  + k  o (2) 
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where k i (i = 0, 1, 2, 3) are constants. A bistable regime can be reached if 
these constants are properly chosen. The diffusion~lriven reactive system 
A + B--+ C is an irreversible reaction: the densities of A and B decrease at 
all times. The reaction function is the same for A and B: F~ = F b = --Kpapb 
with K being the reaction rate. The equation for component A is 

Otpo = *r O ~ p ~  - -  K p , , p  b (3) 

and a similar equation can be written for component B. We specify the 
following conditions: at t = 0, one half-space is filled with component A of 
density P~o and the other half with B of density Pb0; at x = 1 and x =  L, 
O.,.p,, = O.,-pb = 0 for t > 0. 

3. 1D, 2D,  A N D  3D M O D E L S  

Lattice gas cellular automata (LGCA) models ~1"~~ were proposed 
for simulating the two- and three-dimensional hydrodynamic equations. 
Compared to traditional methods in computational fluid dynamics (CFD), 
these models are simple and easy to implement on computers. A variety 
of applications and generalizations of LGCA have been studied. ~9~ 
Concerning reaction-diffusion systems, the Schl6gi model, ~71 the Maginu 
model,123.6~ and the Sel'kov model 133' 19. 15) have been investigated recently 
by using LGCA models. As an alternative to the macroscopic description 
of real systems, though LGCA models have many interesting features, they 
suffer from some intrinsic weaknesses: (1) The construction of the collision 
matrix associated with a given reaction system is very tedious ~2~ and the 
derivation of transport coefficients is very difficult; (2) a high level of 
statistical fluctuation (which is useful in studying the divergence of trans- 
port coefficients tls'8~ when the space dimension D is less than 3) requires 
the use of a coarse-grain averaging over space or time. The advantages and 
disadvantages of LGCA have been well understood. ~9"2s) The lattice 
Boltzmann equation (LBE) was introduced to remove some of the draw- 
backs while keeping the advantages of LGCA models, t24' 17. |) A further 
simplification using the BGK procedure ~2~ was recently studied t3~ 4. 3,~ and 
applied to the Sel'kov model ~27) in two dimensions as an example. 

3.1. Pure Di f fusion Equat ion 

In lattice BGK models for pure diffusion problems, the propagation 
step is the same as lattice gas models, while the collision step is just a 
redistribution of mass in all possible directions. The only quantity c o n -  
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served during the redistribution is the total mass. We start with the 
following evolution equation: 

Ni(x-~-Ci, t JC 1)=Ni(x,  t)+ CO[N~x, t)--Ni(x, t)] (4) 

where N; is the average population of particles with velocity e i 
( i=  1, 2 ..... B) which belongs to a predetermined finite set and co is the 
relaxation parameter which satisfies 0<~co~<2. The local equilibrium 
population N~(x, t) is chosen as 

1 
N~(x, t )=  tip(x, t), t i=- ~ (5) 

B is the number of discrete particle velocities. This is a homogeneous 
equilibrium population in all velocity directions. The macroscopic density, 
denoted by p, is defined by 

B B 

p(x, t) = ~ Ni(x, t) = ~ N~(x, t) (6) 
i i 

The weighting factor t i satisfies the normalization constraint Z~ s t i-- 1. The 
choice (5) for the equilibrium population, when used together with (4) and 
(6), will be shown to lead to the diffusion equation. We consider models 
with the particle velocity set in D dimensions ( D =  1, 2, and 3). The 
simplest models take the velocity set of 2D elements: D directions along the 
axis and D opposite directions. The rest particles can also be included. 
Therefore, as explained in ref. 30, the DIQ2 model means the one-dimen- 
sional model with two velocities: ( i t ) ;  the D2Q4 model is two dimen- 
sional and has four directions: ( • c, 0), and (0, • c). The three-dimensional 
D3Q6 model has six possible velocity directions: ( +c, 0, 0), (0, i t ,  0), and 
(0, 0, i t ) .  This model has the same velocity directions as the Broadwell 
model in discrete kinetic theory, c13) The equation governing the large-scale 
dynamics of (4), in which the local equilibrium distribution N~ is given by 
(5), can be derived using a Chapman-Enskog expansion. (3'm'zs) Since 
similar procedures for the LGCA and LBE have been used before (see, for 
example, refs. 9 and I0); here we will only outline the steps necessary 
to obtain expressions for the transport coefficients. We assume a weak 
deviation from the local equilibrium N~(x, t), 

Ni(x, t)= N~(x, t)+ eNl')(x, t)+ t2Nl.:)(x, t ) +  ... (7) 

where e is the appropriate Knudsen number. The space and time 
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derivatives are expressed in terms of multiple-scale variables up to the 
fourth order in time, 

a~=eo, (8) 

D r --'-- '~Otl -F e20t2 "F ~30t3 -F e40,4 (9) 

Here the multiple time scales tl, t2, t3, a n d  t, t should not be confused with 
the prefactor weighting ti in the equilibrium. When the total mass is 
conserved, it follows from (4)-(7) that 

~NIJ) =0, j > O  (10) 
i 

Using the classic Chapman-Enskog (3) expansion and taking into account 
the discreteness of the lattice model, we obtain the first-order equation 
in e, 

and the first-order correction, 

O,,p =0  (11) 

(I) _ li 
N i - -  - - -  c a O ~ p  (12) 

CO 

The second-order equation is 

0 (,,> 

It is easy to check that the condition (10) is satisfied by N;(1). Substituting 
(12) into (13), we obtain finally 

C 2 
0 , , p - - ~  ( 2 - - 1 ) O ~ p = O  (14, 

Equations (11) and (14), i.e., the dynamical equations from the two 
separated time .scales 1/e and 1/e 2, are now reconstituted to obtain the 
macrodynamical equations for the model. The equation of diffusion equa- 
tion is obtained from (11) and (14) by multiplying the former by e and the 
latter by e 2 and then adding the two equations. We obtain 

O,p =~2O~p (15) 
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where the diffusivity x2 is given by 

/~2=~ -1 (16) 

We can also obtain higher order equations by carrying the Chapman- 
Enskog expansion further. This is possible for the diffusion models, while 
no such equations exist for the lattice gas hydrodynamics. (29~ We derive the 
third-order equation 

3,3 p = 0  (17) 

and the fourth-order equation 

Or, p = - A  ~O~,~l~pp - A 2 0 ~ , p  (18) 

The coefficients A], A2, and x2 in (15) for models including rest particles 
are obtained after some algebraic calculations, 

_ - 1  ( 1 9 )  x. = B 2D 

where B. ,  is the number of nonzero velocities in the model (B is the total 
number of particle velocities, which is different from B. ,  if a rest particle is 
included: B = B. ,  + 1 ), 

A 1 - -  B 2 D  \ c o  2 co 4 , / K 2  ( 2 0 )  

A2=c2( - - - 7  x2 (21) 
co- co 12,/ 

The final fourth-order equation is 

Otp = K20aa p -- A l O~apP - A 2O~ap (22) 

Applying the Fourier transform exp(--t-2t--ikx) (k  is the wavenumber and 
/2 the frequency) to the above equation in one-dimensional space, we get 
the dispersion relation 

g 2 = K 2 k Z + ( A l + A z ) k  4, K 4 = A l + A  2 (23) 

and x is defined by 

/2 
tc = ~-~ (24) 
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After simple algebraic calculations, we find that the critical co~ across 
which x ,  changes sign for different models is given by the following: 
O g c r = 3 - - V / 3  fo r  D 1 Q 2 ;  f O c r = 2  fo r  D1Q3; ( O c r = 4 X / / 3 - - 6  fo r  D 2 Q 5 ;  

cocr = 1 for D3Q6; coc~ = 1 8 -  12 x/~ for D3Q7. The D2Q4 model has no 
such behavior. We will verify these results numerically. 

3.2. Reaction Function 

The reaction term is treated in a much simpler way than the one used 
in the L G C A  model ,  t2~ The idea is that we can consider the reaction term 
as a special kind of  "forcing" for the diffusion process. We follow the 

1.1 ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' 

1.08 DIQ2 Model (L=256) 

Curves: 1.0+(~/~2) k 2 ~/ 

/ 
1.06 Points: Simulation ~ /  

/ 
,I ~4 = ~2"(i/6-i/~+i/~z) ~ /  
o 

1.04 

# 

~- 1.02 

0.98 , , , , I , , J , I , , , , I , , , , 

0 0.1 0.2 0.3 0.4 
w a v e n u m b e r - - k  (~=0.75,1.00,1.25,1.50,1.75) 

Fig. 1. Dispersion relation K/x 2 versus k, with k being the wavenumber. The value of K/K 2 
decreases as co increases for the D1Q2 model. The lines are theoretical predictions while the 
open triangles, solid triangles, open squares, solid squares, and open circles are numerical 
simulations for o9 = 0.75, 1.00, 1.25, 1.50, and 1.75, respectively. The critical o~r across which 
the x4 changes sign is coc,= 1.26795 for this model. 
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implementation of body forces introduced in ref. 28 to incorporate the 
reaction term R;. It is added to the right-hand side of (4): 

Ri = tiFs 

We can see easily that the following relation holds: 

(25) 

~R,=Fs (26) 
i 

A strong assumption is used here: we assume the reactions occur only 
locally, which means a local diffusive equilibrium which is always satisfied 
by the reaction, t7"341 

1.02 

I 
I 

o 

z 1.ol 

D2Q4 Mode l  
O 

Open:  L = 1 2 8 ;  Sol id :  L = 2 5 6  / 

C u r v e :  1 .0+  k ~ / 2 4  / o 

P o i n t s :  S i m u l a t i o n  

0.99 , , , I , , , i , , , I t , , 
0 0.2 0.4 0.6 0.8 

w a v e n u m b e r - - k  (~=0.75,1.00,1.25,1.50,1.75) 

Fig. 2. Dispersion relation x/~:2 versus k. The open triangles, solid triangles, open squares, 
solid squares and open circles are numerical simulations corresponding to o) = 0.75, 1.00, 1.25, 
1.50, and 1.75, respectively. No critical value of o~cr across which the x4 changes sign exists 
for the D2Q4 model. 
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4. S I M U L A T I O N  RESULTS 

We measure the diffusivity x 2 as a function of the relaxation parameter 
09 in the purely diffusing case. The diffusivities of the D1Q2, D2Q4, and 
D3Q6 models'differ only by a factor of the space dimension D. Good 
agreement between simulations and theoretical predictions is obtained 
(better than 0.1%). The dispersion relation has also been checked. Results 
are given in Figs. 1-3. The curves correspond to theoretical results x/x2, 
while the points correspond to numerical simulations. Satisfactory agree- 
ment in all cases is achieved. The fourth-order corrections may have effects 
in the regime of large Knudsen number, i.e., large k and small 09. We see 
from these figures that the influence of 09 on the dispersive behavior in the 
1D case is opposite to the 3D case. In general, the fourth-order and higher 

' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' 
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Fig. 3. Dispersion relation x/x2 versus k for the D3Q6 model. The value of x/K, increases as 
ro increases for this model. The open triangles, solid triangles, open squares, solid squares, and 
open circles are numerical simulations corresponding to o~=0.75, 1.0, 1.25, 1.5, and 1.75, 
respectively. The critical value o)cr is 1.0 for this model. 
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order terms can be neglected in the long wavelength (small k) and long- 
time limits (small f2). 

The front is a special kind of pattern, which has been extensively 
studied theoretically and experimentally. (26) On the one hand, there may 
exist some analytical solutions under certain conditions or some 
asymptotic behaviors can be studied; on the other hand, it is easier to 
prepare experimentally the two completely separated reacting components 
than to mix them up uniformly at the initial time without reactions. The 
irreversible A + B --* C system looks "simple". However, no general analyti- 
cal solution has been found (16) for general initial and boundary conditions. 
Figure 4 shows the density and production profiles at five different times 
for the case of equal density ratio, i.e., pbo/Pro = 1. Perfect symmetry is 
preserved. Figure 5 demonstrates the case with PbO/PrO = 2; in this case, we 
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Fig. 4. Density profiles Pb and p, (upper graph) and the production rate R (lower graph) for 
the D I Q2 model. Different curves correspond to different times: T =  200, 400, 600, 800, 1000. 
The parameters are Pb0 =Pro = 1.0, oJ b =o ) r=  1.0, and K=0.01 .  
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see the front moving to the right side. The scaling laws for this p rob lem are 
shown in Figs. 6-8. They represent,  respectively, the width  of  the front 
IV(T), the center  of  the front xf(T) for the asymmetr ic  condi t ions,  and the 
normal ized  p roduc t ion  function R(x, T)= Kp,,pb. The width IV is defined 
by 

W2(T)=Y~i-L (x-xf)2  R(x, T) T2~, (27) 
. x ' = L  

~- '~ ' .~ . '=  I . R ( X ,  T )  

the center  xf by 

x = L  

~.,-=] xR(x, T) TI/2 (28) x/(T)= x=z. . 
~_..,. =, R(.x, T) 

e,,., 
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f ' " ' ( ' " ,  " ( ' " ' ~ ' " " ( ' " ' ; ' " ;  , , I , ~ J ~ ~ "  ~ ' - - ~ ' ~  I , , ~ , I 
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Fig. 5. Density profiles Pb and Pr (upper graph) and the production rate R (lower graph)�9 
Different curves correspond to different times: T=200, 400, 600, 800, 1000. The parameters 
are Pbo = 1.0, Pro = 0.5, co h = co, = 1.0, and K= 0.01. 
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and the production rate by 

R(x, T) = Kp,,pt, ~ T-PG[ ( x -  xf) T -~'] (29) 

G/tiff and R a c z  112) found that in the long-time regime ~=1/6  and 
fl = 2/3. From Figs. 6 and 8, we obtain the same exponents for long-time 
asymptotics. Figure 7 shows the 1/2 scaling for x s. Figure 6 also shows a 
transitory regime between the long-time 1/6 scaling and a short-time 1/2 
scaling which was not found in the asymptotic analysis. A scaling function 
is found from Fig. 8. We fit the curve with 

G(~) ~exp ( -  ~_), a 2 = ~  -~ (30) 
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I I 

Fig. 6. Width of the front W(T) as a function of time T; a log-log plot. The parameters are 
Pbo = P,~ = 1.0, co b = cot = 1.0, and K =  0.01. Two different regimes are clearly seen: the short- 
time 1/2 scaling regime and the long-time 1/6 asymptotics. 
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For different K 2, the function agrees quite well with the numerical simula- 
tion for ~ near 0. A more detailed comparison with the results of G~lfi and 
R~cz is needed for large ( since they found an Airy function behavior in 
that region/~2) An interesting problem to be studied is how scaling 
exponents depend on the space dimension and stochastic stirring processes. 
Our lattice BGK models without random stirring is a field description, 
therefore no space dimension dependence is expected. Local particle 
methods,t ~4) give a strong dependence of scaling exponents on space dimen- 
sion. Bramson and Lebowitz t3s) proved mathematically that D - - 4  is a 
critical value for the case of homogeneous, equal initial density distribu- 
tions. The renormalization group (RG) approach was used to derive and 
to find new scaling exponents/22) Therefore, it will be of interest to use 
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O 

n~ 

CJ 
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X v 
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I I I I 

i/2 

i/2 

I , r , , I , , , , I , ~ , , I 
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l o g ( T ) - - T i m e  I t e r a t i o n  T ( D 1 Q 2  M o d e l , K = 0 . O 1 . C p b = l . 0 , C p r f f i 0 . 5 )  

Fig. 7. Center of the front X/(T) versus time T, a log-log plot. The parameters are 
Pb0 =PrO = 1.0, COb= 1.0, CO~=0.5, and K =  0.01. A short transition exists between the short- 
time 1/2 regime and the long-time 1/2 asymptotics. 
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Fig. 8. Normalized rate R(x, t)* T 2/3 as a function of normalized distance ( X - X t ) / T  ~/6. 
Different symbols correspond to different times: triangles, square, pentagons, open circles, and 
solid circles are for time T=600, 700, 800, 900, and 1000, respectively. The parameters are 
Pl,o = P,o = 1.0, col,= cot = 1.0, and K = 0.01. All data collapse on a single Gaussian-like scaling 
function. 

noisy latt ice B G K  models  to s tudy coupl ing effects of  space d imension and 
r andom stirring. 

F o r  the following chosen parameters  of  the Schl6gl model,  

F R ( p )  = --K(p 3 -  1.5p2 + 0.6875p -0 .09375) ,  K =  0.01 (31) 

a bistable regime with Pt = 0.25 and P2 = 0.75 is predicted. Figure  9 shows 
the time evolut ion for the Schl6gl model  in two dimensions;  a r andom 
initial densi ty with mean density equal  to 0.5 is used. Large-scale pat terns  
are formed in the course of time; solid lines represent  high densities (close 
to 0.75) and dashed lines low densities (close to 0.25). Figure  9 exhibits the 
capabi l i ty  of  our  model  to capture  such interesting behavior  at  large scale. 
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Fig. 9. Density contours at four times T= 1000, 2000, 3000, and 4000 for the Schl6gl model 
in two dimensions. The solid lines represent high density; dotted lines represent lower density. 
The bistable regime is chosen as FR(p)= -K(p3--1.5p-" + 0.6875p- 0.09375). 

More work about large-scale pattern formations (Turing structures) with 
detailed comparisons with experimental results and with numerical results 
of other numerical methods will be pursued. 

5. CONCLUDING REMARKS 

In this paper, the lattice BGK models have been used to study front 
dynamics and pattern formations in reaction-diffusion systems. As 
examples, the diffusion-driven reactive model (A + B ~ C) and the Schl6gl 
model have been tested. In the diffusion-driven case, we verified the 
asymptotic results concerning the scaling exponents c~, fl and the scaling 
function of the production rate G at long times. Noisy lattice BGK models 
may be introduced to study the dependence of space dimension and ran- 
dom stirring on scaling exponents. We have derived the fourth-order 
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cor rec t ions  for the first t ime, and  very  accura te  numer i ca l  results  do  con-  

f irm ou r  theore t i ca l  predic t ions .  T h e  lat t ice B G K  m o d e l s  use the  mean- f ie ld  

a p p r o x i m a t i o n  and  are  cons ide red  as a m e s o s c o p i c  desc r ip t ion  o f  real  
systems. I t  p rov ides  a new numer i ca l  a p p r o a c h  to u n d e r s t a n d  c o m p l i c a t e d  

p h e n o m e n a  such  as T u r i n g  s t ructures .  
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